Understanding the Characteristics of Breastfed Baby Stool to Better Describe Normal Healthy BM

Dianna Kenneally¹, Jennifer Gustin¹, Don Roe¹, Susana Waimin Siu¹ and Ben Kutay¹
¹Procter & Gamble Company, Cincinnati, OH, USA

BACKGROUND

The characteristics of feces vary according to age, diet, hydration and health, and can differ in terms of consistency, quantity, homogeneity and color. Previously, scales have been published to describe stool (Bristol, Amsterdam), however, neither have been optimized to represent healthy stool types) within the normal range as watery with curds or mucousy homogeneity classifications (such as watery stools).2

Methods

According to the Bristol stool scale, there are seven types, including:

1. Hard lumps
2. Lumpy-no shape
3. Soft buttery
4. Soft lumps
5. Soft
6. Watery with curds
7. Watery with no solid pieces (entirely liquid)

The Amsterdam stool scale further classifies stool types specific to infants, and is organized into four different categories: watery, soft, formed and hard.2 However, as most parents and neonatal nurses know, breastfed infant stool is primarily liquid and not always watery or homogeneous.

The consistency of infant stool is in fact widely variable and is not completely described by these scales. Additionally, these scales describe runny or watery BM as a result of diarrhea, inflammation or infectious disease, but do not always cover healthy BM. Normal healthy breastfed newborns have a wide range of consistencies and homogeneity classifications (such as watery stools).3

RESULTS

To understand the stool output and characterize stool consistency, color, homogeneity and quantity of healthy breastfed newborns.

Methods

To understand the stool output and characterize stool consistency, color, homogeneity and quantity of healthy breastfed newborns.

Learning Objective

To understand the stool output and characterize stool consistency, color, homogeneity and quantity of healthy breastfed newborns.

Conclusions

Exclusively breastfed infant BM can have a wide range of consistencies not covered by the Bristol and Amsterdam scales. Normal healthy breastfed baby stool, while liquid overall, has different consistencies and colors that can exist that can exist simultaneously or in different periods of the day and vary from baby to baby. One diarrhea BM event may be observed in the same baby. The wide variability of stool output can help explain the frequent occurrence of BM leakage (refer to as “diaper blowout”) even in infants who are exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Conclusions

Excavated breastfed infant BM can have a wide range of consistencies not covered by the Bristol and Amsterdam scales. Normal healthy breastfed baby stool, while liquid overall, has different consistencies and colors that can exist that can exist simultaneously or in different periods of the day and vary from baby to baby. One diarrhea BM event may be observed in the same baby. The wide variability of stool output can help explain the frequent occurrence of BM leakage (refer to as “diaper blowout”) even in infants who are exclusively breastfed babies.

Exclusively breastfed infant BM can have a wide range of consistencies not covered by the Bristol and Amsterdam scales. Normal healthy breastfed baby stool, while liquid overall, has different consistencies and colors that can exist that can exist simultaneously or in different periods of the day and vary from baby to baby. One diarrhea BM event may be observed in the same baby. The wide variability of stool output can help explain the frequent occurrence of BM leakage (refer to as “diaper blowout”) even in infants who are exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Conclusions

Excavated breastfed infant BM can have a wide range of consistencies not covered by the Bristol and Amsterdam scales. Normal healthy breastfed baby stool, while liquid overall, has different consistencies and colors that can exist that can exist simultaneously or in different periods of the day and vary from baby to baby. One diarrhea BM event may be observed in the same baby. The wide variability of stool output can help explain the frequent occurrence of BM leakage (refer to as “diaper blowout”) even in infants who are exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Conclusions

Excavated breastfed infant BM can have a wide range of consistencies not covered by the Bristol and Amsterdam scales. Normal healthy breastfed baby stool, while liquid overall, has different consistencies and colors that can exist that can exist simultaneously or in different periods of the day and vary from baby to baby. One diarrhea BM event may be observed in the same baby. The wide variability of stool output can help explain the frequent occurrence of BM leakage (refer to as “diaper blowout”) even in infants who are exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.

Through our analysis, we are proposing adding a more specific characterization of breastfed baby stool to the current classification systems (Amsterdam and Bristol), which involves additional homogeneity classifications (such as watery with curds or mucousy infant stools) within the normal range for healthy exclusively breastfed babies.